
Multi-way	Trees

CS	5010	Program	Design	Paradigms	
“Bootcamp”
Lesson	6.6

1
©	Mitchell	Wand,	2012-2014
This	work	is	licensed	under	a	Creative Commons Attribution-NonCommercial 4.0 International License.

Introduction
• We've	talked	about	binary	trees
• Sometimes,	we	need	to	construct	trees	in	which	
each	node	has	an	unbounded	number	of	sons.		
We	call	these	multi-way	trees.
– example:	a	file	system,	in	which	a	directory	can	have	
any	number	of	files	or	directories	in	it.

– example:	S-expressions,	in	which	a	LoSS may	contain	
any	number	of	strings	or	SoS's.

– an	XML	item.
– in	this	lesson,	we'll	do	a	case	study	of	one	application	
of	multi-way	trees.

2

Learning	Objectives

• At	the	end	of	this	lesson,	the	student	should	
be	able	to:
– recognize	situations	in	which	a	structure	may	have	
a	component	that	is	a	list	of	similar	structures

– write	a	data	definition	for	such	values
– write	a	template	for	such	a	structure
– write	functions	on	such	structures

3

Ancestor	Trees
(define-struct person (name father mother))

;; A Person is either
;; --"Adam"
;; --"Eve"
;; --(make-person String Person Person)

;; person-fn : Person -> ???
(define (person-fn p)

(cond
[(adam? p) ...]
[(eve? p) ...]
[else (...

(person-name p)
(person-fn (person-father p))
(person-fn (person-mother p)))]))

4

Here	are	ancestor	trees,	
an	application	of	binary	
trees,	which	we	saw	
before.			For	this	
representation,	we	
needed	 to	introduce	
"adam" and	"eve" as	
artificial	"first	people".

A	Different	Info	Analysis:	
Descendant	Trees

(define-struct person (name children))

;; A Person is a
;; (make-person String Persons)

;; A Persons is one of
;; -- empty
;; -- (cons Person Persons)

5

Two	mutually	recursive	
data	definitions

Here	is	a	different	information	
analysis:	instead	of	keeping	track	of	
each	person's	parents,	let's	keep	
track	of	each	person's	children.		A	
person	may	have	any	number	of	
children,	including	no	children.		So	
we	can	represent	each	person's	
children	as	a	list	of	persons.
So	now	we	have	a	pair	of	mutually-
recursive	data	definitions.

This	is	mutual	recursion

Person Persons

6

defined	in	terms	of	

defined	in	terms	of	

The	template	recipe
Question Answer

Does	the	data	definition	 distinguish	
among	different	subclasses	of	data?

Your	template	needs	as	many	cond
clauses	as	subclasses	that	the	data	
definition	 distinguishes.

How	do	the	subclasses	differ	from	each	
other?

Use	the	differences	 to	formulate	a	
condition	per	clause.

Do	any	of	the	clauses	deal	with	structured	
values?

If	so,	add	appropriate	selector	expressions	
to	the	clause.

Does	the	data	definition	 use	self-
references?

Formulate	``natural	recursions''	for	the	
template	to	represent	the	self-references	
of	the	data	definition.

Do	any	of	the	fields	contain	compound or	
mixed	data?

If	the	value	of	a	field	is	a	foo, add	a	call	to	
a	foo-fn to	use	it.

7

Here	is	the	recipe	for	templates	
again.		Let's	apply	it	to	our	Person	
trees.

Template:	functions	come	in	pairs
;; person-fn : Person -> ??
(define (person-fn p)
(... (person-name p)

(persons-fn (person-children p))))

;; persons-fn : Persons -> ??
(define (persons-fn ps)
(cond
[(empty? ps) ...]
[else (... (person-fn (first ps))

(persons-fn (rest ps)))]))

8

Here	is	the	pair	of	
templates	that	we	
get	by	applying	the	
recipe	to	our	data	
definition.

They	are	mutually	 recursive,	
as	you	might	expect.

The	template	questions
;; person-fn : Person -> ??
(define (person-fn p)
(... (person-name p)

(persons-fn (person-children p))))

;; persons-fn : Persons -> ??
(define (persons-fn ps)
(cond
[(empty? ps) ...]
[else (... (person-fn (first ps))

(persons-fn (rest ps)))]))

9

And	here	are	the	
template	questions,	 as	

usual.

Given	the	answer	for	a	person’s	
children,	how	do	we	find	 the	

answer	for	the	person?

What’s	the	answer	for	
the	empty	Persons?

Given	the	answer	for	the	first	person	 in	the	list	and	the	answer	for	the	rest	
of	the	people	 in	the	list,	how	do	we	find	 the	answer	for	the	whole	list?

Examples
(define alice (make-person "alice" empty))
(define bob (make-person "bob" empty))
(define chuck (make-person "chuck" (list alice bob)))

(define dave (make-person "dave" empty))
(define eddie
(make-person "eddie" (list dave)))

(define fred
(make-person
"fred"
(list chuck eddie)))

10

fred

chuck eddie

alice bob dave

Vocabulary

• A	tree	where	each	node	contains	a	list	of	
subtrees is	called	a	multi-way	tree,	or	a	rose	
tree.

• Observe	that	the	"base	case"	is	a	tree	
containing	an	empty	list	of	subtrees.

11

Grandchildren
;; grandchildren : Person -> Persons
;; GIVEN: a Person
;; RETURNS: a list of the grandchildren of the given
;; person.
;; EXAMPLE: (grandchildren fred) = (list alice bob dave)
;; STRATEGY: Use template for Person on p
(define (grandchildren p)
(... (person-children p)))

12

A:	We	need	a	function	which,	
given	a	list	of	persons,	produces	

a	list	of	all	their	children

Here's	a	simple	
function	we	might	
want	to	write.		

Q:	Given	p’s children,	how	do	
we	find	p’s grandchildren?

persons-all-children
;; persons-all-children : Persons -> Persons
;; GIVEN: a list of persons
;; RETURNS: a list of all their children.
;; (persons-all-children (list fred eddie))
;; = (list chuck eddie dave)
(define (persons-all-children ps)
(cond
[(empty? ps) empty]
[else (append

(person-children (first ps))
(persons-all-children (rest ps)))]))

13

This	one	was	too	easy!	
It	didn't	require	mutual	

recursion.

;; persons-all-children : Persons -> Persons
;; GIVEN: a list of persons
;; RETURNS: a list of all their children.
;; (persons-all-children (list fred eddie))
;; = (list chuck eddie dave)
(define (persons-all-children ps)
(cond
[(empty? ps) ...]
[else (...

(person-children (first ps))
(persons-all-children (rest ps)))]))

Putting	it	together
;; grandchildren : Person -> Persons
;; STRATEGY: Use template for Person on p
(define (grandchildren p)

(persons-all-children (person-children p)))

;; persons-all-children : Persons -> Persons
;; STRATEGY: Use template for Persons on ps
(define (persons-all-children ps)

(cond
[(empty? ps) empty]
[else (append

(person-children (first ps))
(persons-all-children (rest ps)))]))

14

We	could	use	HOFs,	too
;; grandchildren : Person -> Persons
;; STRATEGY: Use template for Person on p
(define (grandchildren p)

(persons-all-children (person-children p)))

;; persons-all-children : Persons -> Persons
;; STRATEGY: Use HOF map on ps
(define (persons-all-children ps)

(foldr append empty
(map person-children ps)))

15

Of	course,	a	Persons is	a	list,	
so	we	can	use	our	list	
abstractions	to	define	
persons-all-children.			This	will	
often	be	the	case.

descendants

• Given	a	person,	find	all	his/her	descendants.
• What’s	a	descendant?
– a	person’s	children	are	his/her	descendants.
– any	descendant	of	any	of	a	person’s	children	is	
also	that	person’s	descendant.

• Hey:		this	definition	is	recursive!

16

Here's	a	slightly	
harder	task.

Contracts	and	Purpose	Statements
;; person-descendants : Person -> Persons
;; GIVEN: a Person
;; RETURNS: the list of his/her descendants

;; persons-descendants : Persons -> Persons
;; GIVEN: a Persons
;; RETURNS: the list of all their descendants

17

Here	are	the	contracts	and	purpose	
statements.		
The	task	description	 talked	about	"all	the	
descendants	of	a	person's	children".			A	
person's	children	are	a	list	of	persons,	 so	that	
gives	us	a	clue	that	we	will	need	the	function	
we've	called	persons-descendants here.

Examples

(person-descendants fred)
= (list chuck eddie alice bob dave)

(persons-descendants (list chuck eddie))
= (list alice bob dave)

18

fred

chuck eddie

alice bob dave

The	template	questions
;; person-fn : Person -> ??
(define (person-fn p)
(... (person-name p)

(persons-fn (person-children p))))

;; persons-fn : Persons -> ??
(define (persons-fn ps)
(cond
[(empty? ps) ...]
[else (... (person-fn (first ps))

(persons-fn (rest ps)))]))

19

And	here	are	the	
template	questions,	 as	

usual.

Given	the	answer	for	a	person’s	
children,	how	do	we	find	 the	

answer	for	the	person?

What’s	the	answer	for	
the	empty	Persons?

Given	the	answer	for	the	first	person	 in	the	list	and	the	answer	for	the	rest	
of	the	people	 in	the	list,	how	do	we	find	 the	answer	for	the	whole	list?

;; Person -> Persons
;; STRATEGY: Use template for Person on p
(define (person-descendants p)

(...
(person-children p)
(persons-descendants (person-children p))))

;; Persons -> Persons
;; STRATEGY: Use template for Persons on ps
(define (persons-descendants ps)

(cond
[(empty? ps) ...]
[else (...

(person-descendants (first ps))
(persons-descendants (rest ps)))]))

Function	Definitions
;; Person -> Persons
;; STRATEGY: Use template for Person on p
(define (person-descendants p)

(append
(person-children p)
(persons-descendants (person-children p))))

;; Persons -> Persons
;; STRATEGY: Use template for Persons on ps
(define (persons-descendants ps)

(cond
[(empty? ps) empty]
[else (append

(person-descendants (first ps))
(persons-descendants (rest ps)))]))

20

The	answers	come	
right	from	the	
definition!

We	fill	in	the	blanks	
in	the	template	with	
the	answers	to	the	
template	questions.

Or,	with	the	HOFs
;; Person -> Persons
;; STRATEGY: Use template for Person on p
(define (person-descendants p)
(append
(person-children p)
(persons-descendants (person-children p))))

;; Persons -> Persons
;; STRATEGY: Use HOF map followed by foldr
(define (persons-descendants ps)
(foldr append empty
(map person-descendants ps)))

21

As	we	did	before,	we	could	
replace	the	structural	
decomposition	 on	Persons	
with	Higher-Order	Function	
Composition.	 	The	functions	
are	still	mutually	 recursive.

Tests
(check-equal?
(person-descendants fred)
(list chuck eddie alice bob dave))

(check-equal?
(persons-descendants (list chuck eddie))
(list alice bob dave))

22

Are	these	good	tests?

• Could	a	program	fail	these	tests	but	still	be	
correct?	If	so,	how?

• Answer:	Yes!	It	could	produce	the	list	of	
descendants	in	a	different	order.

23

Better	Tests
(require "sets.rkt") ;; or whatever...

(check set-equal?
(person-descendants fred)
(list chuck eddie alice bob dave))

(check set-equal?
(person-descendants fred)
(list chuck eddie alice dave bob))

(check set-equal?
(persons-descendants (list chuck eddie))
(list alice bob dave))

24

There	are	two	ways	we	could	
solve	this	problem:
1.	We	could	have	our	purpose	
statement	specify	the	order	 in	
which	the	descendants	are	to	be	
listed.
2.	We	could	use	smarter	tests	
that	would	accept	the	answer	
list	in	any	order.

Here	we've	adopted	 the	second	
approach.		Instead	of	check-
equal?,	we	use	check,	which	
takes	as	its	first	argument	a	
predicate	to	be	used	to	compare	
the	actual	and	expected	
answers.		We'll	have	to	require	a	
library	that	provides	set-equal?--
the	file	sets.rkt,	which	we	
worked	with	last	week,	will	do	
nicely.		We've	put	a	working	
copy	of	sets.rkt in	the	Examples	
file	for	this	week.	

Here	are	some	tests	for	
(descendants	 fred)	that	list	the	
answer	in	two	different	orders.

Summary

• You	should	now	be	able	to:
– recognize	situations	in	which	a	structure	may	have	
a	component	that	is	a	list	of	similar	structures

– write	a	data	definition	for	such	values
– write	a	template	for	such	a	structure
– write	functions	on	such	structures

25

Next	Steps

• Study	the	file	06-6-descendants.rkt	in	the	
Examples	folder

• If	you	have	questions	about	this	lesson,	ask	
them	on	the	Discussion	Board

• Do	Guided	Practice	6.6
• Do	the	problem	set

26

